
Root cause localization in large scale systems

Emre Kıcıman Lakshminarayanan Subramanian
Stanford University University of California, Berkeley

Abstract

Root cause localization, the process of identifying the source
of problems in a system using purely external observations, is
a significant challenge in many large-scale systems. In this pa-
per, we propose an abstract model that captures the common
issues underlying root cause localization and hence provides
the ability to leverage solutions across different systems.

1 Introduction

Many large-scale systems, as diverse as Internet service clus-
ters, inter-domain routing in the Internet and software sys-
tems, suffer from a common problem: when the system fails
to function properly, it is often difficult to determine which
part of the system is the source of the problem. The fun-
damental challenge is that, often times, the symptoms of a
failure manifest as end-to-end failures in the operation of
the system as a whole, without causing obvious failures in
the system’s pieces; simply noticing that something has gone
wrong is not enough to tell us where to look to fix it. We
illustrate this problem using three diverse examples. First, de-
tecting the source of a large-scale outage in Internet routing
can be a nightmare—network operators often call other op-
erators and exchange large volumes of emails on the opera-
tor mailing lists [17]. Second, a significant amount of time in
managing Internet service clusters, like web farms, is spent
detecting and localizing service failures [19, 7]. Finally, it is
well-known that diagnosing bugs in large-scale software sys-
tems using even the best debugging technologies is a labori-
ous task involving several human hours or more [15].

We refer to root cause localiztion as the process of deter-
mining the source of problems in a system purely by exter-
nally observing the behavior of the system. The communities
that build these large-scale systems have historically taken
different approaches to solving this problem—alternatively
referred to as fault diagnosis, alarm correlation, root cause
analysis, and bug isolation in the context of a wide variety
of systems [4, 5, 3, 23, 11, 8, 21, 6]. Despite this, we take
the position that many of the challenges are common across a
surprisingly diverse set of these systems.

In this paper, we capture the commonality across different
systems by defining an abstract system model and formalizing
the root cause locatization problem for this model. Our model
explicitly represents the nature of end-to-end failures, cap-
tures the common theoretical and computational challenges,

and separates system-specific challenges into the process of
mapping a system representation into the abstraction. While
the generality of the model will definitely not capture sev-
eral intrinsic details of a system, it does provide the ability
to re-use techniques from other systems and tune them for
system-specific needs.

The primary motivation of this abstract modeling is to set up
a clear bridge that enables researchers in different communi-
ties to share knowledge in a common language. In particular,
we hope to enable and attract theory and machine learning
researchers to attack this general problem. To highlight this
promise, we show how one can leverage existing techniques
to solve specific aspects of the general problem and briefly
illustrate how these solutions have been applied in the three
application domains mentioned above.

2 Example applications

We ground our approach to root cause localization by consid-
ering the problem in the context of three very different sys-
tems: root cause analysis of Internet routing dynamics, fail-
ures in clustered Internet services, and the bug isolation prob-
lem in software systems. In this section, we present a brief
introduction to these applications and the root cause localiza-
tion problem in each.

2.1 Root cause analysis of BGP dynamics

Understanding the dynamics of Internet routing and pinpoint-
ing the source of routing problems is critical to address many
of the shortcomings of the Border Gateway Protocol (BGP),
the de facto interdomain routing protocol.

Observing a route update is a clear symptom that some event
has occurred. A BGP health inferencing system [4, 5, 9] that
performs root cause analysis of BGP dynamics uses data col-
lection centers like Routeviews [24] and RIPE [22], which
continuously receive streams of route updates from multiple
vantage points. Each route update is associated with path-
vector information describing the entire path at the granular-
ity of Autonomous systems (AS’s). The underlying root cause
localization problem in BGP can be stated as follows: Given
route updates observed at multiple vantage points, determine
the potential set of locations of events (at the granularity of
AS’s) that could have triggered each route update.

Clearly characterizing the exact cause of an event is funda-
mentally hard, given that the potential list of causes of routing



events in BGP are innumerable (due to the volume of possible
BGP policies). Hence, the root cause localization problem is
restricted to determining the location of an event as opposed
to identifying the exact cause.

2.2 Failures in Internet service clusters

Today’s Internet services (e-commerce, search engines, enter-
prise applications and others) commonly suffer from brown-
outs, where part of the functionality of a site goes down or is
unavailable, resulting in the failure of user requests. It is crit-
ical to quickly determine the source of such problems to re-
duce the overall downtime of the system. While certain types
of failures such as a process crash are easy to detect, the chal-
lenging aspect arises when the only detectable symptom of a
failure is an end-to-end failure, e.g., a front-end web server
observes users’ failed HTTP requests.

Large Internet services are usually built using clusters of ma-
chines (from 100s to over 50000 machines [16]) divided into
multiple tiers (a front-end tier of web servers, multiple tiers
of application logic, and a back-end tier of persistent storage)
and a user’s HTTP request usually traverses most of the tiers
in the system. To aid in the diagnosis of such a large system, it
is becoming common practice to dynamically record and log
the path of a request (the machines and services used to fulfill
the request) [7, 2, 1].

The root cause localization problem in such a system can be
formulated as: Given the paths of both successful and failed
requests, determine the set of components most likely to have
caused the failures.

2.3 Bug isolation

It has long been recognized that the existence of bugs is
practically guaranteed in large software projects. Bugs that
are deterministic and easily reproduced are relatively easy to
track down and fix. Other bugs, humorously named heisen-
bugs [10], are non-deterministic and quite difficult to track
down, even with the latest debugging tools.

Recently, Liblit et al. have proposed an approach they call
statistical debugging [15], where they advocate constant sam-
pling of the code-level behaviors of end-user software during
normal execution. These behaviors include the results of con-
ditional tests, the return values of functions, etc. By discover-
ing which of these behaviors are most correlated with symp-
toms of a heisenbug, statistical debugging helps programmers
understand and discover a bug’s true cause.

Statistical debugging is a direct counterpart to the root cause
localization problem in other systems, and can be re-stated as:
Given the code-level behaviors associated with both correct
and buggy executions of a program, determine what parts of
the code are most likely to have caused the bug.

3 Root cause localization problem

In this section, we define a basic form of the root cause local-
ization problem and describe how this problem abstractly cap-
tures the three example applications described above. Later in
Section 5, we provide two refinements to this problem which
can capture additional aspects of more complex failures.

3.1 System model

We abstractly model a large scale system simply as a collec-
tion of a specified set of components interacting with each
other. While a clear characterization of the set of components
is dependent on the system/application under consideration,
the definition of a component should satisfy three properties:
(a) each component should be disjoint from other compo-
nents; (b) all components when considered together should
completely represent the system; (c) a component, as a whole,
should be visible to an instrumentation box diagnosing the
system.

Given that failures are externally visible only as end-to-end
failures, we assume that the behavior of the individual com-
ponents is not diagnosable in isolation. The only observations
that are visible to external instrumentation are what we define
as quarks - the smallest end-to-end observable unit of a fail-
ure or success. The health result of a quark signifies whether
a quark is a success or a failure. Each quark essentially repre-
sents a tuple consisting of: (a) the subset of components used
by the quark; (b) a health result.

While this model encapsulates the essential computational el-
ements of root cause localization, it explicitly abstracts sev-
eral system-specific concerns. The possible locations of a fail-
ure within the system are represented in the abstract model as
components, and determining what these possible locations
are in the context of a specific system must be addressed on a
case-by-case basis. Anticipating how the symptoms of a fail-
ure may manifest will guide the definition of a quark. Finally,
for the abstract model to be an aid in root cause localization,
the association between a quark and its set of used compo-
nents must represent how faults propagate from their source
to their symptoms. Without a reasonable approximation of
this fault propagation, the failed quarks in the abstract model
will not be able to lead us to the cause of a failure. All these
system-specific concerns must be answered in the process of
transforming a physical system model into the abstract model.

We now revisit the three examples and define the components
and quarks in them. In BGP, we associate two different types
of components: AS’s and inter-AS links. This is primarily to
distinguish between events triggered across inter-AS bound-
aries (e.g., peering link failure) and internal routing events
within an AS. Given a path-vector route (A, B,C) traversing
three AS’s, the components are A, B, C, (A, B) and (B, C).
Every route observed at a vantage point represents a quark.
Routes that are stable represent healthy quarks and any prefix
that is updated is an unhealthy quark signifying the occur-
rence of a routing event.



In the case of Internet service clusters, the components of
our model are the machines and software services running on
them, across all tiers of the system. The work done to sat-
isfy a user’s HTTP request is the quark of our model. All the
machines and services that process some part of the HTTP
request make up the quark’s associated components. Separate
failure detectors, such as HTTP error monitors or anomaly
detectors, can be used to determine whether an HTTP request
succeeded, and mark the health of a quark accordingly.

In software programs, a code module that performs a spe-
cific functionality is a component and the code-level behavior
corresponding to every execution of the program represents a
quark. A correct program execution is a successful quark and
a buggy execution is an unsuccessful quark. Note that every
execution of the code traverses a different set of components
depending on the system environment and input parameters.

When applying our model to a real system, we note that the
model fundamentally assumes a componentized system—a
requirement trivially met by most distributed systems. Less
trivially, to practically apply this model to a real system we
must be able to observe at least some of the quarks in the
system along with their associated components.1

3.2 Modeling partial failures

Components across different types of systems have widely
varying granularities. Some components, like AS’s, are by
themselves large distributed systems while blocks of code in a
software program may be quite simple. In general, we can as-
sociate a component with one or more functionalities, where
the number of functionalities is dependent on the type of sys-
tem and scale of the component.

We define a partial failure of a component to be the case when
one or more functionalities of a component fail (or are mod-
ified) while the others are unaffected. In this model, we im-
plicitly assume that partial failures within one component are
independent and do not influence partial failures in other com-
ponents. While this does not account for more complex fail-
ures, in Section 5 we describe two refinements to relax this
limitation.

The failure of a functionality within a component manifests
itself externally by causing any quark that uses that function-
ality to fail. To account for this, we use a simple probabilistic
model for a partial failure of a component: Given a compo-
nent, Ci, let probability pi represent the failure probability of
a quark that utilizes component Ci. This probabilistic model
makes no assumptions about the specific functionalities that
are associated with a component. While in certain applica-
tions, one may be able to specify all the functionalities as-
sociated with a component, here, we assume that this infor-
mation is not available. It is important to note that the value

1For example, if we are unable to determine the path of a route in
BGP or path of a user request in service clusters, one cannot apply
this model.

pi is dependent on the distribution of quarks using the failed
and successful functionalities of a component Ci (pi = 0, if a
completely unused functionality in a component has failed).

3.3 Basic problem definition

Consider a large scale system with a set of components, S =
{C1, C2, . . . Cn}. An instrumentation box monitors some of
the quarks of the system where each quark Q = (Qs, Qh)
where Qs is a subset of components and Qh is a binary health
result represented as 0 or 1.

Based on this probabilistic model of partial failures and the
assumption that partial failures are independent (a refinement
in Section 5.2 handles dependent failures), we define two ver-
sions of the root cause localization problem:

1. Deterministic version: Given several quarks in the sys-
tem of which some failed (i.e., Qh = 0), determine the
potential set of components that have experienced a par-
tial failure i.e., list of components Ci with pi > 0.

2. Statistical version: Given several quarks in the system
of which some failed (i.e., Qh = 0), estimate the partial
failure probability pi for each component Ci.

We refer to the deterministic version as the partial failure
identification problem. Identifying the components that may
have failed in general is easier than estimating pi and also re-
quires a much smaller statistical sample set of quarks. How-
ever, when the potential set of faulty components is very large,
the estimates of pi can help pinpoint the mostly likely faulty
components.

4 Potential solutions

In this section, we describe four approaches to handling root
cause localization in different application domains. While
none of these approaches completely solve the problem, they
each work effectively under their own set of assumptions.
Showing that these approaches may apply to the abstract
model of root cause localization indicates that they may also
be applied to a broader set of systems outside their original
domain.

Of these solutions, the link-rank and minimum set-cover algo-
rithms address specific aspects of the deterministic version of
the problem and decision tree learning and logistic regression
address the statistical version of the problem.

4.1 Generic challenges

There are two core challenges in root cause localization, both
related to the quantity and quality of our observations of the
system. In the end, how well we address these challenges in
the context of a specific system determines how effective a
solution is to the root cause localization problem.

Component Visibility and System Structure: The accuracy
with which we can address the root cause localization prob-
lem is dependent on the coverage of the quarks (how well our



observed quarks cover the components in the system) and the
variety of the quarks (how much the quarks’ associated com-
ponent sets differ from one another). In practice, the set of
components that a quark covers is largely dictated by the sys-
tem’s structure.2 In particular, given the limitations of end-to-
end failures, we cannot localize a fault in a component which
is not used by any quarks; nor can we diagnose a failure in a
system where all quarks are identical, such as a parallel com-
puting system where every calculation depends on every com-
ponent in the system. In less extreme cases, we may able to
localize a problem to a subset of components but not pinpoint
the specific component whose failure triggered a failed quark.

Time granularity: It is not enough to state that our observed
quarks must provide good coverage and variety; they must
provide good coverage and variety within a relevant period of
time. To accurately pinpoint component failures, we require
a significant sample set of quarks during the period of the
failure. While failures may tend to persist for long periods in
certain applications (e.g., bugs in software programs), several
applications like Internet routing use inbuilt mechanisms to
adapt and recover from failures. To perform diagnosis in self-
adapting systems, we must have a significant sample set of
quarks during short failure periods.

4.2 Link-rank algorithm

Link-rank [14] has been proposed as an algorithm to pinpoint
the sources of large routing events in BGP, i.e., events that si-
multaneously affect the dynamics of many routes. Given route
updates from multiple vantage points, the basic algorithm
computes a link-rank for every inter-AS link as the number of
routes using the link. The rank-change associated with a link
represents the change in link-rank over a short period of ob-
servation and a link is reported as a suspect candidate choice
of a routing event if the rank-change is above a prescribed
threshold (in absolute terms). Several recent works on BGP
root cause analysis [4, 5, 9], have further developed this basic
technique to improve the accuracy of the results.

The link-rank algorithm can be viewed as a simple approach
for the partial failure identification problem, where the rank-
change metric is a measure of the number of failed quarks that
utilize a component. A component is reported as a candidate
if this count is above a system-specific threshold.

We make two additional observations. First, the link-rank al-
gorithm does not identify all components with partial failures
but only pinpoints those components which clearly stand-out
as candidates3. Second, the algorithm only uses information
from failed quarks to determine failed components.

2Most systems do not provide the flexibility to define quarks with
an arbitrary set of components but rather constrain this set based on
the system structure.

3The threshold determines the confidence level in the correctness
of the output of the algorithm.

4.3 Minimum set cover

A complete failure model represents a specific case of partial
failures where p = 0 or p = 1. Under this assumption, one
can view the root cause localization problem as an optimiza-
tion problem to identify the minimum set of failed compo-
nents that can explain all the failed quarks. This optimization
implicitly assumes that the number of failures in the system
is small at any given instant and hence attempts to minimize
this number.

One can transform this optimization problem to the classi-
cal set cover problem [12] using two steps. First, any compo-
nent that is part of a successful quark will not be the cause
of a failure and is removed from consideration. Second, given
the set of quarks associated with each remaining component,
computing the minimum set cover that covers all failed quarks
is equivalent to determining the minimum set of failed com-
ponents that can explain the root cause of all failed quarks.
While the set cover problem is NP-complete, one can leverage
good approximation algorithms with an approximation ratio
of log N (N = number of failed quarks) for this problem [12].

The minimum set cover method works only under certain as-
sumptions. First, it assumes a complete failure model where
the failure of a component completely lasts during the period
of observation i.e., no component recovers from a failure dur-
ing the observation period. Second, the solution to minimum
set cover is not unique. For example, if two components occur
in all failed quarks, then the algorithm should report both as
suspect as opposed to just one of them.

4.4 Decision tree learning

In previous work, we have used decision tree learning to local-
ize failures in the context of Internet service clusters [7, 13].
It seems like that this technique can also be useful in our ab-
stract model.

A decision tree is a data structure that represents a classifica-
tion function, where each branch of the tree is a test on some
attribute of the input, and where the leaves of the tree hold the
result of the function. Decision tree learning is the process of
building a decision tree to most accurately classify a set of
training data [20].

To solve the root cause localization problem, we learn a deci-
sion tree to classify (predict) whether a user’s HTTP request
is a success or a failure based on its associated components.
Of course, we already know the health of the request—what
interests us is the structure of the learned decision tree; look-
ing at which components are used as tests within the deci-
sion tree function tells us which components are correlated
with request failures. Similarly, by applying decision trees to
classify quarks based on their associated components, we can
hope to localize faults in our abstract model.

Unlike the link-rank algorithm, the decision tree uses the in-
formation from both the healthy and unhealthy quarks to de-
cide which components in the system are most likely to be



faulty. Its statistical nature means it gracefully tolerates in-
consistencies in the training data. Also, because decision trees
can naturally represent disjunctive hypotheses, they are robust
to multiple simultaneous independent faults.

4.5 Logistic regression

In statistical debugging, Liblit et al. use logistic regression to
discover which low-level behaviors in a program’s code are
most correlated with buggy program runs [15].

Logistic regression fits a linear model to a set of training data,
trying to learn a linear function of the low-level code behav-
iors that will correctly classify a program run as either correct
or buggy. Under the assumption that most of the code behav-
iors will not be relevant to a failure, Liblit et al. regularize the
input parameters to force the linear model to use only the few
behaviors that correctly characterize the failure.

As described in Section 2.3, in our abstract model, each pro-
gram run is a quark and the low-level behaviors of the code
are the “components” associated with each quark. In this con-
text, logistic regression may be able to find the components
likely causing quark failures.

Like decision trees, logistic regression takes into account both
healthy and unhealthy quarks, and gracefully degrades in the
face of inconsistencies. While logistic regression is computa-
tionally more efficient than decision trees, it does not handle
multiple independent faults very well.

4.6 Solutions recap

In this section, we have discussed solutions to the compu-
tational and theoretical aspect of the root cause localization
problem. While none of the these solutions completely ad-
dress the abstract problem, they do highlight the potential for
sharing ideas and solutions among the various research com-
munities. It also enables theory and statistical experts to pro-
vide improved solutions for the general problem.

Of course, the system-specific parts of root cause localiza-
tion, such as determining exactly what constitutes a failure in
a domain, are also important. Additionally, there is a signifi-
cant opportunity for system-specific techniques to help miti-
gate the challenges of component visibility, system structure
and time granularity. Adding new observation points within
the system may increase the visibility of quarks and perhaps
increase their coverage and variety. In some systems, it is pos-
sible to artificially inject new quarks to probe the system and
control the set of components in this quark. This opens up
a new class of solutions to root cause localization, not de-
tailed here, based on methodical exploration of possible fault
propagation paths. To improve our time granularity in systems
where collecting observations exacts some cost, we might be
willing to pay that cost to observe more quarks once we notice
a fault in the system. Coercing transient failures into longer
faults can also lengthen the amount of time we have to collect
a significant set of quarks.

5 Refining the Basic Model

The model of a partial failure, as we defined in Section 3.2
is simplistic, in that it assumes failures across components to
be independent of each other. In this section, we relax this as-
sumption and refine our model to support two types of com-
plex failures: (a) a common problem simultaneously causes
several components to fail; (b) the interaction between a set
of components triggers a failure. While by no means are these
refinements complete enough to capture various forms of fail-
ures, we describe them primarily to show how one can extend
our problem to model different types of complex failures.

5.1 Modeling simultaneous correlated failures

There exists many types of systems where several compo-
nents may simultaneously fail due to an underlying common
cause.4 Such types of failures are typically hard to model
and localize without additional knowledge about possible
causes of simultaneous failures. For this purpose, we define
attributes of a component as additional descriptions specified
by the underlying system about the potential causes of com-
ponent failures. E.g., in Internet services, one useful set of at-
tributes might include the operating systems, middleware and
versions of each component. In BGP, Caesar et al. [4] clas-
sify causes of routing events into disjoint equivalence classes
where each class can be viewed as an attribute. In general, we
expect several attributes to be common across different com-
ponents to capture commonality in failures.

With this refinement, the root cause localization problem boils
down to determining the set of components and attributes
which appear to be triggering failures in quarks. Many of the
statistical learning theory techniques, including decision trees
and logistic regression, can be extended to model attributes
in conjunction with components. Of particular interest is the
case of large-scale homogeneous systems where the function-
alities across several components are alike (e.g., nodes in a
structured peer-to-peer network) and hence the attributes of
many components are alike. Here, when applying statistical
techniques, one can model attributes as being equivalent to
the components in the system to determine common problems
across components.

5.2 Failures caused by component interactions

Some failures are caused not by faults in a single component,
but by multiple components interacting together. For exam-
ple, latent faults in two components and subtle incompatibil-
ities due to version differences can cause otherwise perfectly
functioning components to fail when used together. Formally,
we define a set of components to have an interaction-failure
if any quark that uses all these components always fails while
any quark that uses only a subset of these components is al-
ways successful. This set of components represents the small-
est set of components that have an interaction failure. Finding

4For example, the spread of the SQL Slammer worm triggered
several routers to simultaneously reset.



this smallest set of components defines the root cause local-
ization problem in the context of interaction-failures.

While the potential number of interaction failures is exponen-
tially large, two specific constraints in the context of many
real-world systems make this problem relatively tractable.
First, the number of components involved in an interaction
fault is relatively small. Secondly, the system structure and
observed interactions between components limits the possi-
ble interaction failures we have to consider.

Theoretically, this problem turns out to be similar to a prob-
lem in bio-informatics where the interaction between differ-
ent genetic abnormalities5 can potentially be a source of can-
cerous tumor cells. In [18], Michael Newton proposes a set of
statistical techniques to identify these genetic abnormalities
and these techniques are potentially applicable in the context
of interaction failures.

6 Conclusions

The primary goal of this paper has been to point out the
commonalities among the root cause localization problem in
different systems. We are able to capture this commonality
through our abstract definition of components and quarks as
representing in a system what can fail, how failures manifest,
and how faults propagate. Part of the hope behind this ab-
straction is to stimulate discussion among the communities
that build these systems and elicit the help of theory and ma-
chine learning experts to propose solutions for the underlying
problem. For example, we were able to determine the cor-
relation between interaction-failures and the cancer detection
problem only through this abstract modeling. Two noteworthy
limitations of our work are:

Limitations of our model: Not all systems fit the descrip-
tion of our system model. Some systems may inherently not
be separable into components, due to one of following con-
straints: (a) the system structure inherently is not modular and
does not permit division into components; (b) a failure may
manifest and corrupt the entire system as opposed to specific
components, such that splitting the system into components
does not provide any benefit; (c) the system may be opaque
and end-to-end failures convey little information about com-
ponents or system behavior i.e., the quark has no visible asso-
ciation with components.

Appropriateness of our solutions: Though a system may
fit the model, statistical approaches to root cause localization
may not always be appropriate. For example, [21] discusses
the problem of diagnosing configuration problems on a single
computer using a database of known symptoms and solutions.
Though this problem statement maps to our abstract model, in
a single computer environment, we will not be able to capture
enough variety of quarks to apply statistical techniques.

Overall, we hope that our efforts encourage future collabora-
tion in this area across both the various large-scale systems

5regions of DNA which have be deleted, amplified or modified

communities, and the theoretical and statistical research com-
munities.

References
[1] AppAssure, Alignment Software, 2002. http://www.

alignmentsoftware.com/.
[2] Tealeaf Technology, Integritea, 2002. http://www.

tealeaf.com/.
[3] A. Brown, G. Kar, and A. Keller. An active approach to char-

acterizing dynamic dependencies for problem determination in
a distributed environment. In IFIP/IEEE International Sympo-
sium on Integrated Network Management, 2001.

[4] M. Caesar, L. Subramanian, and R. H. Katz. Root cause analy-
sis of Internet routing dynamics. Technical report, U.C. Berke-
ley UCB/CSD-04-1302, 2003.

[5] D.-F. Chang, R. Govindan, and J. Heidemann. The temporal
and toplogical characteristics of BGP path changes. In ICNP,
2003.

[6] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. A sta-
tistical learning approach to failure diagnosis. In International
Conference on Autonomic Computing, May 2004.

[7] M. Y. Chen, A. Accardi, E. Kıcıman, D. Patterson, A. Fox, and
E. Brewer. Path-Based Failure and Evolution Management. In
USENIX/ACM NSDI, 2004.

[8] R. Chillarege. Self-testing software probe system for failure
detection and diagnosis. In Proceedings of the 1994 conference
of the Centre for Advanced Studies on Collaborative research,
page 10. IBM Press, 1994.

[9] A. Feldmann, O.Maennel, Z. Mao, A. Berger, and B.Maggs.
Locating internet routing instabilities. ACM SIGCOMM, 2004.

[10] J. Gray. Why do computers stop and what can be done about
it? In In Proceedings of 5th Symposium on Reliability in Dis-
tributed Software and Database Systems, Los Angeles, CA,
1986.

[11] B. Gruschke. Integrated event management: Event correlation
using dependency graphs.

[12] D. S. Johnson. Approximation algorithms for combinatorial
problems. Journal of Computer and System Sciences, 1974.

[13] E. Kıcıman and A. Fox. Detecting Application-Level Failures
in Component-based Internet Services. 2004. In preparation.

[14] M. Lad, D. Massey, and L. Zhang. Link-rank: A graphical tool
for capturing BGP routing dynamics. IEEE/IFIP NOMS, 2004.

[15] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug Isola-
tion via Remote Program Sampling. In ACM PLDI, 2003.

[16] J. Markoff and G. P. Zachary. In Searching the Web, Google
Finds Riches. New York Times, August 13, 2003.

[17] NANOG: The North American Network Operators Group.
http://www.nanog.org/.

[18] M. A. Newton. Discovering combinations of genomic alter-
ations associated with cancer. Journal of the American Statis-
tical Association, 2002.

[19] D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do in-
ternet services fail, and what can be done about it? In USITS,
2003.

[20] J. R. Quinlan. Induction of decision trees. Machine Learning,
1(1):81–106, 1986.

[21] R. Redstone, M. M. Swift, and B. N. Bershad. Using Comput-
ers to Diagnose Computer Problems. In 9th Workshop on Hot
Topics in Operating Systems, Kauai, HI, 2002.

[22] RIPE’s Routing Information Service Raw Data Page.
http://data.ris.ripe.net/.

[23] M. Steinder and A. Sethi. Increasing robustness of fault local-
ization through analysis of lost, spurious and positive symp-
toms. In Proceedings of IEEE INFOCOM, 2002.

[24] University of Oregon RouteViews project.
http://www.routeviews.org/.


